Multi-Person Pose Estimation via Column Generation

نویسندگان

  • Shaofei Wang
  • Chong Zhang
  • Miguel Ángel González Ballester
  • Alexander T. Ihler
  • Julian Yarkony
چکیده

We study the problem of multi-person pose estimation in natural images. A pose estimate describes the spatial position and identity (head, foot, knee, etc.) of every non-occluded body part of a person. Pose estimation is difficult due to issues such as deformation and variation in body configurations and occlusion of parts, while multi-person settings add complications such as an unknown number of people, with unknown appearance and possible interactions in their poses and part locations. We give a novel integer program formulation of the multi-person pose estimation problem, in which variables correspond to assignments of parts in the image to poses in a two-tier, hierarchical way. This enables us to develop an efficient custom optimization procedure based on column generation, where columns are produced by exact optimization of very small scale integer programs. We demonstrate improved accuracy and speed for our method on the MPII multiperson pose estimation benchmark.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Pose and Cell Segmentation using Column Generation

We study the problems of multi-person pose segmentation in natural images and instance segmentation in biological images with crowded cells. We formulate these distinct tasks as integer programs where variables correspond to poses/cells. To optimize, we propose a generic relaxation scheme for solving these combinatorial problems using a column generation formulation where the program for genera...

متن کامل

Efficient Multi-Person Pose Estimation with Provable Guarantees

Multi-person pose estimation (MPPE) in natural images is key to the meaningful use of visual data in many fields including movement science, security, and rehabilitation. In this paper we tackle MPPE with a bottom-up approach, starting with candidate detections of body parts from a convolutional neural network (CNN) and grouping them into people. We formulate the grouping of body part detection...

متن کامل

LCR-Net++: Multi-person 2D and 3D Pose Detection in Natural Images

We propose an end-to-end architecture for joint 2D and 3D human pose estimation in natural images. Key to our approach is the generation and scoring of a number of pose proposals per image, which allows us to predict 2D and 3D poses of multiple people simultaneously. Hence, our approach does not require an approximate localization of the humans for initialization. Our Localization-Classificatio...

متن کامل

DeeperCut: A Deeper, Stronger, and Faster Multi-person Pose Estimation Model

The goal of this paper is to advance the state-of-the-art of articulated pose estimation in scenes with multiple people. To that end we contribute on three fronts. We propose (1) improved body part detectors that generate effective bottom-up proposals for body parts; (2) novel image-conditioned pairwise terms that allow to assemble the proposals into a variable number of consistent body part co...

متن کامل

Dual Path Networks for Multi-Person Human Pose Estimation

The task of multi-person human pose estimation in natural scenes is quite challenging. Existing methods include both top-down and bottom-up approaches. The main advantage of bottom-up methods is its excellent tradeoff between estimation accuracy and computational cost. We follow this path and aim to design smaller, faster, and more accurate neural networks for the regression of keypoints and li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.05982  شماره 

صفحات  -

تاریخ انتشار 2017